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ABSTRACT 

The degeneracy of quantum mechanical energy levels is discussed from the 

novel perspective of the inverse scattering problem. The coalescence of energy 

levels is illustrated for a class of potentials which are completely characterized by 

their bound-state spectra. Other applications of this style of analysis are 

suggested. 
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1. INTRODUCTION 

In most quantum-mechanical systems defined on the infinite one-dimensional 

line, degenerate bound states can in principle not occur. To show this, let us 

consider two distinct, normalizable solutions 4,(x) and o,(x) to the SchrGdinger 

equation 

P2 
zi;t%d + [E - V(x)]@(x) = 0 

with a common energy eigenvalue Ef = E2 = E. The Wronskian determinant 

W(X) Z $1 (X)$2(X) - @l(X)@> (X) 

is a constant, independent of position, because by (1.1) 

&W(x) = $‘i (X)$,(X) -O,, (XNl;(X) 

= fi2 1 Q $I (x)~$~(x)(E~ - E,) 

(1.1) 

(1.2) 

, (1.3) 

and by assumption E2 - El = 0. It is then convenient to evaluate the Wronskian at 

infinity, where both I$(x) and $‘(x) are exponentially vanishing, so that 

W(x) = 0 (1.4) 

This implies, in the absence of pathologies, that $f and $2 are linearly dependent, 

contrary to assumption. Hence the levels cannot be degenerate. To keep this 

phenomenon in perspective, we note that such a no-degeneracy theorem can be 

evaded in special circumstances. A pair of infinitely deep square wells of finite 

width is perhaps the most familiar example. 
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There the matter normally rests in quantum mechanics courses.’ If any 

further discussion is given, it is to show by example that the degeneracy of levels in 

nearby identical wells is lifted by quantum mechanical tunneling. Here we wish to 

provide a different and complementary perspective on degeneracy, by investigating 

what happens to wavefunctions and bound-state spectra as energy eigenvalues 

coalesce. This may be done in the context of the inverse scattering problem, the 

problem of reconstructing a potential from information about its bound-state 

spectrum and its scattering phase shifts.2 

In classical mechanics, an incident particle cannot be reflected by a potential 

well or barrier which lies below the particle’s energy. This is not generally so in 

quantum mechanics, but for a special class of potentials, known as reflectionless 

potentials, the reflection coefficient vanishes identically for all continuum levels. 

The simplest example is 

2 2 
V(x) = - 5 sech2 (KX) 

which supports a single bound state at 

Ebs = -fi2K 2/2 p 

with the bound-state wavefunction 

Q (x) =A sech (K x) 

and for which the continuum wavefunctions corresponding to energy eigenvalues 

(1.5) 

(1.6) 

(1.7) 

E cant 
= fi2k2/2u 

are 

(1.8) 
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I+,(X) = eikx tanh (KX) - is 
(1.S) 

For the special case of a symmetric, reflectionless potential in one 

dimension, the potential and the bound-state wavefunctions are uniquely deter- 

mined as algebraic functions of the binding energy. 374 The simplicity of the 

inverse problem for these potentials makes them especially suitable for illustrating 

by example the approach to degenerate energy levels. 

In the next Section we shall summarize the inverse scattering formalism for 

symmetric reflectionless potentials, and employ it to exhibit the evolution of a 

potential and its bound-state wavefunctions as two or more energy eigenvalues 

approach one another. This will show how the Wronskian argument is realized. 

Details of the formalism are not required for an appreciation of the examples, but 

in §II.A we present complete expressions for the reader who wishes to investigate 

other cases. Suggested extensions of these studies and brief summary remarks 

make up the final section. 

II. COLLIDING LEVELS 

What becomes of the bound states supported by a symmetric potential when 

bound-state energies come together. 3 The inverse scattering technique enables US 

to construct a potential with a prescribed bound-state spectrum, and to study the 

changes that take place when the eigenvalue spectrum is varied. To appreciate the 

examples to be discussed below, it is only required to know that this can be done. 

For completeness, however, we include a brief r&urn6 of the algorithm. 

Derivations may be found in the original literature. The reader principally 

concerned with results may pass directly to subsection 8. 

A. Formalism 

The symmetric, reflectionless potential that supports N bound states at 
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E. = V(m) - fi2~ .2/2u , i = I ,..., N 
I I (2.1) 

is given by4 

V(x) = V(m) -M’ 2 log [D(x)] 
u dx2 

(2.2) 

where the function D(x) is defined by5 

D(x) = II 6, ?kosh 

S 
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It is convenient to label the bound states so KI > K2 > . . . > K N. Each term in the 

sum (2.3) is labelled by a subset S of {I, . . 

The symbol II stands for 

II& 9 5 n 
iCS 
jCS 

N) ; 5 denotes the complement of S. 

Ki+Kj 
Ki - K. 

I 
(2.4) 

When either S or 5 is empty, II(S, 9 : 1. In the examples considered below we shall 

choose V(m) = 0, and K = 1 = 2~. 

One can also derive explicit algebraic formulae for the bound-state wave- 

functions, which make numerical solutions to the Schrodinger equation unnecessary 

in these exercises. The wavefunctions may be written most symmetrically as5 

[7.~ C(p, 
$p(x) = ’ D(x) 

IN} - p)l ’ 
(-,)“(S;ph(S, 5 - p)cosh 

S?lP 

(p odd) (2.5) 

and 

[2~ Il(p, IN} - p)l’ 
JI ,(x) = - D(x) (-I)“(‘;~)II(s, S - p)sinh 

S$P 

(p even) , (2.6) 

where u(S; p) denotes the number of elements of S with indices less than p,and 

{N} - p is the set 1, 2, . ..p - I, p + 1 , . ..N. The forms (2.2)-(2.6) are quite suitable 

for computer evaluation and are rather compact for small values of N. In them the 

reflection symmetry properties of the potential and wavefunction are manifest.6 
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8. Applications 

As a first application of these relations, let us consider a potential which 

supports two initially nondegenerate bound states characterized by K~ = 1.3, 

7 2 = 0.7. The resulting potential and the normalized wavefunctions Q,(x) = $ ,(-x) 

are shown in Fig. I(a). The potential is a smooth single well, and the bound-state 

wavefunctions have the form of typical textbook idealizations. Now let K 1 5 
and 

both approach the common limit K~ = I = K2. As the levels approach degeneracy, 

the potential divides into two buckets, which retreat toward x = f a, carrying with 

them the quantum-mechanical bound-state probability [ Figs. I(b)-l(f)]. In this 

special case of a symmetric, reflectionless potential, it can be seen from eq. (2.3) 
K -K 

that for I 2 

I I 
K +K2 

<< 1 the individual wells are centered about 
I 

liK I 
x 

0 
= ?&log 

K1 - K2 

As Fig. I suggests, 1 x01 becomes infinite as K~ + K 2. 

(2.7) 

The bound-state wavefunctions become increasingly similar as the eigen- 

values approach one another, so that for x > 0, +,(x1 :: @,(x1 and for x < 0, 

4 ,(x) = - 9,(x). Over an increasing (and ultimately infinite) range in x, the 

wavefunctions vanish. Because for this case of a symmetric potential the linearly 

dependent eigenstates have opposite parity, neither level can exist in the K, + ~~ 

limit. All of this is of course entirely in accord with the familiar Wronskian 

argument. From the inverse scattering exercise we see how this argument is 

realized for potentials which are constructed from prescribed bound state energies. 

A complementary view of the same phenomenon is obtained by considering a 

potential consisting of two identical buckets of the form (1.5). When the buckets 

are widely spaced, the bound state levels are nearly degenerate. As the buckets 

are brought closer together, tunneling from one to the other becomes more likely 
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with the result that the two levels split apart, the odd parity state moving up and 

the even parity state moving down. What is gained from the inverse scattering 

exercise is some insight into how the transition from nondegeneracy to degeneracy 

takes place. 

In the presence of (N - 2) additional nondegenerate bound states, the result of 

the collision of two levels is qualitatively the same. Two wells emerge from the N- 

bound-state potential, and retreat in symmetric fashion to x = +m as the 

degeneracy becomes increasingly exact. They leave behind a symmetric reflection- 

less potential which supports only the N - 2 nondegenerate levels. If ~~ approaches 

kp+l the retreating buckets are calculated in the general case to be centered at 

x =k 
0 KP y:p+l 1 .E+, ) ;i ) } - (2*8) 

To illustrate this in a simple case, we show in Fig. 2 the evolution of a three-bound- 

state potential with KI = 1.3 and ~2, k3+ 1. The potential well that remains behind 

after the degeneracy has been attained is the one-level potential (1.5). 

Variations of this behavior may be observed when more than two levels are 

made to approach one another. As an example, Fig. 3 depicts the development of a 

three-bound-state potential as the lowest and highest levels converge on the middle 

one. The potential decomposes into three buckets, two of which recede 

symmetrically to x = f m. The third bucket remains centered at x = 0 and 

approaches the form (1.5). Each of the bound-state wavefunctions also becomes 

trichotomous. After the receding lumps have disappeared, the remaining parts of 

the wavefunctions are all proportional, as required by the Wronskian argument. A 

single linearly independent solution thus survives. 
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III. SUMMARY 

Potentials and bound-state wavefunctions constructed using inverse scat- 

tering techniques have been shown to provide a novel perspective upon the question 

of degeneracy in one-dimensional quantum mechanics. Examples have been given 

to show how bound-state solutions to the Schrcdinger equation become linearly 

dependent and, in the case of coincident levels of opposite parity, may disappear 

entirely. The procedures described here for constructing potentials supporting 

prescribed bound-state spectra may themselves be of instructional value, when 

implemented on computer systems with graphics capabilities. In such a setting, 

many possibilities for independent study at the undergraduate level suggest 

themselves. An obvious extension of the examples we have presented would involve 

the study of bands of several nearly degenerate levels. 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

CAPTIONS 

Evolution of a two-bound-state symmetric, reflectionless 

potential as the levels become degenerate. In addition to the 

potential, the normalized wavefunctions are plotted as 

oi(x) + Ei. The potentials are characterized by (a) K, = 1.3, 

K 2 = 0.7; (b) KI = 1.2, K 2 = 0.8; (C) K1 = 1.1, K2 = 0.9; 

Cd) KI = 1.01, K2 = 0.99; (e) K1 = 1.001, K2 = 0.999; 

(f) K1 = 1.00001, K2 = 0.99999. 

Evolution of a three-bound-state symmetric, reflectionless 

potential as two levels become degenerate. In addition to the 

potential, the normalized wavefunctions are plotted as 

$i(x) + Ei. The potentials are characterized by K~ = 1.3 and 

(a) K2 = 1.1, K3 = 0.9; (b) K2 = 1.01, K3 = 0.99; (C)K2 = 1.001, 

K3 = 0.999; (dlK2 = 1.00001, K3 = 0.99999; (e) “2 = 1.0000001, 

K 3 = 0.9999999. 

Evolution of a three-bound-state symmetric, reflectionless 

potential as the levels become degenerate. In addition to the 

potential, the normalized wavefunctions are plotted as 

$$x) + Ei. The potentials are characterized by ~~ = I and 

(a) K1 = 1.5, K 3 = 0.5; lb) K, = 1.2, K3 = 0.8; (c) K~ = 1.1, 

“3 = 0.9; (d) K, = 1.01, K~ = 0.99; (e) K, = 1.001, K3 = 0.999; 

(f) K1 = I.0001, K3 = 0.9999. 


